Korean Journal of Mycology (Kor J Mycol) 2023 December, Volume 51, Issue 4, pages 347. https://doi.org/10.4489/KJM.20230034
Received on November 15, 2023, Revised on November 27, 2023, Accepted on December 04, 2023.
Copyright © The Korean Society of Mycology.
This is an Open Access article which is freely available under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC) (https://creativecommons.org/licenses/by-nc/4.0/).
REFERENCE
Van Oorschot CA. A revision of Chrysosporium and allied genera. Stud Mycol 1980:1-89.
Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 2006;98:1076-87.
https://doi.org/10.1080/15572536.2006.11832635
Hongsanan S, Maharachchikumbura SS, Hyde KD, Samarakoon MC, Jeewon R, Zhao Q, AlSadi AM, Bahkali AH. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Diversity 2017;84:25-41.
https://doi.org/10.1007/s13225-017-0384-2
Rashmi M, Kushveer J, Sarma V. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 2019;10:798-1079.
https://doi.org/10.5943/mycosphere/10/1/19
Stone JK, Polishook JD, White JF. Endophytic fungi. Biodiversity of fungi: inventory and monitoring methods 2004;241:270.
https://doi.org/10.1016/B978-012509551-8/50015-5
Aly AH, Debbab A, Kjer J, Proksch P. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Diversity 2010;41:1-16.
https://doi.org/10.1007/s13225-010-0034-4
Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK. Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. Recent Advancement in White Biotechnology through Fungi: Diversity and Enzymes Perspectives 2019:1:1-62.
https://doi.org/10.1007/978-3-030-10480-1_1
Harris JL. Modified method for fungal slide culture. J Clin Microbiol 1986;24:460-1.
https://doi.org/10.1128/jcm.24.3.460-461.1986
Dos Santos GD, Gomes RR, Gonçalves R, Fornari G, Maia BH, Schmidt-Dannert C, Gaascht F, Glienke C, Schneider GX, Colombo IR. Molecular identification and antimicrobial activity of foliar endophytic fungi on the Brazilian pepper tree (Schinus terebinthifolius) reveal new species of Diaporthe. Curr Microbiol 2021;78:3218-29.
https://doi.org/10.1007/s00284-021-02582-x
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8.
https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Moncalvo J-M, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 2000;49:278305.
https://doi.org/10.1093/sysbio/49.2.278
Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. AEM 1995;61:1323-30.
https://doi.org/10.1128/aem.61.4.1323-1330.1995
Wang Y, Chen J-Y, Xu X, Cheng J, Zheng L, Huang J, Li D-W. Identification and characterization of Colletotrichum species associated with anthracnose disease of Camellia oleifera in China. Plant Dis 2020;104:474-82.
https://doi.org/10.1094/PDIS-11-18-1955-RE
Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 1999;16:1799-808.
https://doi.org/10.1093/oxfordjournals.molbev.a026092
Templeton MD, Rikkerink EH, Solon SL, Crowhurst RN. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene 1992;122:225-30.
https://doi.org/10.1016/0378-1119(92)90055-T
Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999;91:553-6.
https://doi.org/10.1080/00275514.1999.12061051
Pintos C, Redondo V, Costas D, Aguin O, Mansilla P. Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. Phytopathol Mediter 2018;57:407-24.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4.
https://doi.org/10.1093/molbev/msw054
Sergejeva K. Species novae generis Chaetomium III. Bot Mater Inst Bot Acad Sci URSS 1961;14:139-50.
Wang X, Han P, Bai F, Luo A, Bensch K, Meijer M, Kraak B, Han D, Sun B, Crous P. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud Mycol 2022;101:121.
https://doi.org/10.3114/sim.2022.101.03
Liu C, Zhao J, Cao H. Study on the antifungal effect and mycolytic activity of the biocontrol agent Chaetomium subaff ine LB-1. Plant Prot Sci 2021;57:289-96.
https://doi.org/10.17221/65/2020-PPS
Liu F, Weir B, Damm U, Crous PW, Wang Y, Liu B, Wang M, Zhang M, Cai L. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Pers Mol Phylogeny Evol Fungi 2015;35:63-86.
https://doi.org/10.3767/003158515X687597
Ayvar-Serna S, Díaz-Nájera JF, Vargas-Hernández M, Camacho-Tapia M, Valencia-Rojas GA, Lima NB, Tovar-Pedraza JM. First report of Colletotrichum jiangxiense causing avocado anthracnose in Mexico. Plant Disease 2021;105:502.
https://doi.org/10.1094/PDIS-03-20-0459-PDN
Zhang Y, Zhu Z, Xu Y, Yang L, Wang Y, Chen C, Zheng P, Sun S, Zhou E, Shu C. First report of Colletotrichum jiangxiense causing anthracnose on chili in Yunnan Province, China. Plant Disease 2023;107:568.
https://doi.org/10.1094/PDIS-04-22-0945-PDN
Marin-Felix Y, Groenewald J, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U. Genera of phytopathogenic fungi: GOPHY 1. Studies in mycology 2017;86:99-216.
https://doi.org/10.1016/j.simyco.2017.04.002
Prasai JR, Sureshkumar S, Rajapriya P, Gopi C, Pandi M. Morphological and molecular characterization of endophytic fungi isolated from the leaves of Bergenia ciliata. Ann Romanian Soc Cell Biol 2021:2239-57.
Hilário S, Amaral IA, Gonçalves MF, Lopes A, Santos L, Alves A. Diaporthe species associated with twig blight and dieback of Vaccinium corymbosum in Portugal, with description of four new species. Mycologia 2020;112:293-308.
https://doi.org/10.1080/00275514.2019.1698926
Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD. Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Divers 2014;67:203-29.
https://doi.org/10.1007/s13225-014-0297-2
Guarnaccia V, Crous PW. Species of Diaporthe on camellia and citrus in the Azores Islands. Phytopathol Mediterr 2018;57:307-19.
García D, Stchigel AM, José C, Guarro J, Hawksworth DL. A synopsis and re-circumscription of Neurospora (syn. Gelasinospora) based on ultrastructural and 28S rDNA sequence data. Mycol Res 2004;108:1119-42.
https://doi.org/10.1017/S0953756204000218
Moubasher A, Abdel-Sater M, Soliman Z. Neurospora tetraspora D. Garcia, Stchigel & Guarro (= Gelasinospora tetrasperma Dowding) as a first record to Egypt. Eur J Biol Res 2018;8:1420.