RESEARCH ARTICLE

First Report of Xenoroussoella triseptata **Isolated from Soil in Korea**

Jung-Joo Ryu¹, Seung-Yeol Lee^{1,2}, In-Kyu Kang³, Leonid N. Ten¹, and Hee-Young Jung^{1,2,*} ¹School of Applied Life Science, Kyungpook National University, Daegu 41566, Korea ²Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Korea ³Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea

*Corresponding author: heeyoung@knu.ac.kr

ABSTRACT

A fungal strain, designated KNUF-20-NI009, was isolated from soil collected from Gunsansi, Jeollabuk-do, Korea. The isolate showed cultural features typical of the genus Xenoroussoella. Colonies cultivated on malt extract agar were olivaceous-brown to pale olivaceous-white at the margins, with undersides of dark olivaceous to olivaceous-brown and a white margin. The conidia, with a size range of $2.7-5.1 \times 1.6-3.3 \,\mu$ m (x= $3.6 \times 2.6 \,\mu$ m, n=50), were globoid to ellipsoid in shape, hyaline when immature, becoming light brown to golden-brown when mature, and characterized by 1 or 2 guttules. Multi-locus sequence analysis based on a combined dataset of internal transcribed spacer regions (ITS), large subunit rDNA (LSU), small subunit rDNA (SSU), translation elongation factor 1-alpha (TEF1 α), and RNA polymerase II largest subunit (RPB2) sequences revealed KNUF-20-NI009 to be a strain of Xenoroussoella triseptata. This is the first report of this species in Korea.

Keywords: Morphological characteristic, Phylogenetic analysis, Xenoroussoella

INTRODUCTION

As initially described, the fungal family Roussoellaceae Liu et al. comprised the three genera Neoroussoella Liu et al., Roussoella Sacc., and Roussoellopsis Hino and Katum [1]. Subsequently, based on the multigene analysis of limited taxa, Jaklitsch and Voglmayr [2] synonymized Roussoellaceae under Thyridariaceae. However, the taxonomic status of Roussoellaceae was later re-established by Tibpromma et al. [3], who considered Roussoellaceae and Thyridariaceae to be separate families within the Pleosporales. More recent studies employing additional taxa and combining morphological and phylogenetic analyses have validated this familial distinction [4-8]. Currently, the family Roussoellaceae comprises the following 12 genera: Appendispora Hyde; Cytoplea Bizz. and Sacc.; Elongatopedicellata Zhang et al.; Immotthia Barr, Neoroussoella, Pararoussoella, and Pseudoneoconiothyrium Wanas et al.; Pseudoroussoella Mapook and Hyde; Roussoella Sacc.; Roussoellopsis Hino and Katum.; Setoarthopyrenia Mapook and Hyde; and Xenoroussoella Mapook and Hyde [9]. Among these, the genus Xenoroussoella was initially proposed by Mapook et al. in 2020 [7]. Phylogenetic analysis based on a combined dataset of internal transcribed

OPEN ACCESS

pISSN: 0253-651X elSSN: 2383-5249

Kor. J. Mycol. 2022 September, 50(3): 195-204 https://doi.org/10.4489/KJM.20220020

Received: September 07, 2022 Revised: September 20, 2022 Accepted: September 20, 2022

© 2022 THE KOREAN SOCIETY OF MYCOLOGY.

This is an Open Access article distributed under the terms of the Creative Commons

Attribution Non-Commercial License (http: //creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. spacer (ITS) regions, small subunit rDNA (SSU), large subunit rDNA (LSU), translation elongation factor $1-\alpha$ (TEF1 α), and RNA polymerase II second largest subunit (RPB2) genes revealed that *Xenoroussoella* forms a separate branch and groups with *Pseudoroussoella* species. The genus differs, however, from *Pseudoroussoella* in having smaller ascomata and asci, a thin peridium, and larger ellipsoid to obovoid biseriate ascospores that are 3-septate with irregular longitudinal striations and lacking a gelatinous sheath. In contrast, *Pseudoroussoella* produces oval to ellipsoid uniseriate ascospores that are 1-septate, have reticulate spore wall ornamentation, and are encased in a hyaline gelatinous sheath. The name *Xenoroussoella* is derived from the Greek terms Xeno, meaning separate, and *Roussoella*, meaning roussoella-like [7].

Since the original description of *Xenoroussoella* in 2020 [7], there has been relatively little research conducted on this genus. In Korea, among species in the family Roussoellaceae, *Roussoella doimaesalongensis* has recently been isolated and reported [10]. Given the unknown virulence of *Xenoroussoella* species, it is important to determine the suitable growth media, optimal pH, and temperature for these fungi. In this study, we describe a fungal strain isolated from soil collected from Gunsan-si, Jeollabuk-do, Korea, based on its cultural characteristics on three different media, asexual morphs, and the effect of temperature and pH on its mycelial growth. Finally, on basis of phylogenetic analysis, we identify the fungus as a strain of *Xenoroussoella triseptata* (designated KNUF-20-NI009), which is reported in Korea for the first time.

MATERIALS AND METHODS

Collection of soil samples

The fungal strain KNUF-20-NI009 was isolated from soil collected from Gunsan-si, Jeollabuk-do (35° 49'02.2"N 126°23'36.4"E), Korea. Soil samples were extracted from the soil at a depth of approximately 15-30 cm. Before analysis, the samples were air-dried and then stored in a plastic bag at 4°C. Fungi were isolated using the serial dilution technique. Soil suspensions were prepared by the addition of 1 g of the soil sample to 9 mL of sterile distilled water, followed by vortexing and serial dilution to give dilations of 10⁻³, 10⁻⁴, 10⁻⁵, and 10⁻⁶. Aliquots (1 mL) of each dilution were spread on potato dextrose agar (PDA; Difco, Detroit, MI, USA), followed by incubation for 2 to 3 days at 25°C [11]. Individual colonies developing on the agar were subcultured on fresh PDA plates and incubated at 25°C until the development of mycelium. Based on different cultural characteristics, isolated fungal strains were selected for further molecular analyses. In particular, an isolate designated KNUF-20-NI009 was maintained in 20% glycerol at -80°C for further studies. This strain has been deposited at the National Institute of Biological Resources (NIBR), Incheon, South Korea, with the accession number NIBRFGC000507836.

Morphological characterization

For morphological observations, strain KNUF-20-NI009 was transferred onto PDA, malt extract agar (MEA), and oatmeal agar (OA) and incubated at 25°C for 14 days [12], after which, we measured growth, recorded colony characteristics, such as shape, color, and size, and observed conidiomata under a Dimis-M stereo microscope (Siwon Optical Technology Co Ltd., Anyang, Korea). For an examination of micro-morphological characteristics, the isolate was observed under a BX-50 light microscope (Olympus, Tokyo, Japan).

Effects of temperature and pH on growth

To determine the mycelial growth of the isolate at different temperatures and pH, 6-mm-diameter mycelial plugs were extracted from the edge of 4-days-old PDA cultures using a sterile cork-borer and transferred to the center of 90-mm Petri dishes containing PDA. For an assessment of the effects of temperature, cultures were incubated at 5, 10, 15, 20, 25, and 30°C with three replicate plates per isolate being assessed at each temperature. The effect of pH on the growth rate of KNUF-20-NI009 was evaluated by adjusting the culture medium (PDA) to pH 4, 5, 6, 7, 8, and 9 with HCl or NaOH and incubating at 25°C. To determine growth rates, colony diameters were measured after incubating for 14 days.

Genomic DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from fungal mycelia scraped from PDA plates using a HiGeneTM Genomic DNA Prep Kit (Biofact, Daejeon, Korea) according to the manufacturer's instructions. The isolated DNA was amplified for the detection of five gene markers, namely, internal transcribed spacer (ITS) regions, small subunit rDNA (SSU), large subunit rDNA (LSU), translation elongation factor 1-α (TEF1α), and RNA polymerase II second largest subunit (RPB2) genes, using the primer pairs ITS1F/ITS4, NS1/NS4, LROR/LR5, EF1-983F/EF1-1567R, and fRPB2-5f/fRPB2-7cr, respectively [13-17]. The thermal conditions used for PCR amplification have been described previously [13,17]. The amplified PCR products thus obtained were purified using ExoSAP-IT reagent (Thermo Fisher Scientific, Waltham, MA, USA) and sequenced commercially by Macrogen Co., Ltd. (Daejeon, Korea). Sequences obtained from the KNUF-20-NI009 isolate have been deposited in the National Center for Biotechnology Information (NCBI) GenBank and the DNA Databank of Japan (DDBJ) databases, with the accession numbers LC719282, LC723530, LC719283, LC723531, and LC723532 for ITS, SSU, LSU, TEF1α, and RPB2 respectively.

Phylogenetic analysis

Datasets of the ITS, SSU, LSU, TEF1α, and RPB2 sequences were used to search for similar sequences in the NCBI GenBank database, and comparable sequences from related species were retrieved for phylogenetic analysis (Table 1). Phylogenetic tree was constructed based on a combined alignment of multi-genes using the neighbor-joining (NJ) method with the Kimura 2-parameter model [18] in the MEGA 7 software program, with bootstrap analysis of 1,000 replications [19].

Enneal maning	Sturius	Accession numbers					
Fungai species	Suam	ITS	LSU	RPB2	TEF1a	SSU	
Pararoussoella mukdahanensis	HKAS 101766	MH453489	MH453485	MH453482	MH453478	-	
Pararoussoella rosarum	MFLUCC 17-0796*	MG828939	MG829048	-	MG829224	NG_061294	
Pararoussoella mangrovei	MFLUCC 17-1542	MH025951	MH023318	MH028250	MH028246	-	
Pseudoneoconiothyrium rosae	MFLUCC 15-0052*	MG828922	MG829032	-	-	MG829138	
Pseudoneoconiothyrium euonymi	CBS 143426*	MH107915	MH107961	MH108007	-	-	
Pseudoroussoella chromolaenae	MFLUCC 17-1492*	MT214345	MT214439	-	MT235769	MT214393	
Pseudoroussoella elaeicola	MFLUCC 15-0276a*	MH742329	MH742326	-	-	-	
Pseudoroussoella elaeicola	MFLUCC 15-0276b	MH742330	MH742327	-	-	-	
Pseudoroussoella elaeicola	MFLUCC 17-1483	MT214348	MT214442	MT235808	MT235772	-	
Roussoella arundinacea	CPC 35554	MT223838	MT223928	-	MT223723	-	
Roussoella intermedia	CBS 170.96	KF443407	KF443382	KF443394	KF443398	KF443390	
Xenoroussoella triseptata	MFLUCC 17-1438*	MT214343	MT214437	MT235804	MT235767	MT214391	
Xenoroussoella triseptata	KNUF-20-NI009	LC719282	LC719283	LC723532	LC723531	LC723530	
Occultibambusa bambusae	MFLUCC 13-0855*	KU940123	KU863112	KU940170	KU940193	-	

Table 1. List of species used in the phylogenetic analysis along with their GenBank accession numbers.

Bold characters indicate data from this study.

CBS: Centraalbureau voor Schimmelcultures, The Netherlands; CPC: Culture collection of Pedro Crous, Netherlands; HKAS: Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand.

* Ex-type culture.

RESULTS AND DISCUSSION

Morphology of the KNUF-20-NI009 strain

To determine the morphological characteristics of strain KNUF-20-NI009 colonies, we cultured spore suspensions on PDA, MEA, and OA at 25°C for 14 days. Colony diameters on these media after the 2-week incubation were 55.9-68.0, 45.3-46.2, and 67.8-68.9 mm, respectively. On PDA, the color in the upper surface of the colonies was olivaceous gray, whereas the lower surface was olivaceous green to black in the center with a pale white margin (Figs. 1A and D). The colonies on MEA were olivaceousbrown to pale olivaceous-white at the margin on the upper surface, with undersides of dark olivaceous to olivaceous-brown and a white margin. (Figs. 1B and E). The colonies on OA were characterized by a rugged olivaceous-gray surface with a white to olivaceous margin (Figs. 1C and F). After 2 to 3 weeks on PDA medium, the isolate KNUF-20-NI009 showed pycnidial conidiomata, solitary or gregarious, scattered, globose to subglobose, dark brown to black. The pycnidial wall was 13-17 µm wide (Figs. 2A and B) and the conidiophores were reduced to conidiogenous cells. These cells were $4-7.9 \times 2.6 - 4.8 \,\mu m$ $(\bar{x}=5.5\times3.6 \ \mu m, n=20)$ in size, ampulliform to doliiform, proliferating percurrently at the apex, integrated, discrete, hyaline, and smooth (Figs. 2C-G). Conidia were aseptate, globoid to ellipsoid, with hebetate apex, thick-walled, hyaline when immature, becoming light brown to golden-brown when mature, with 1 or 2 guttules, and measured 2.7-5.1 \times 1.6-3.3 µm (\bar{x} =3.6 \times 2.6 µm, n=50) (Fig. 2H). However, we were unable to compare the asexual morphological characteristics of KNUF-20-NI009 with those of Xenoroussoella

triseptata MFLUCC 17-1438, as these features have yet to be reported for this species. Based on asexual morphology, we compared the isolate with other phylogenetically close reference strains [7]. The conidia diameters of *Roussoella euonymi* (=*Pseudoneoconiothyrium euonymi*) and *Pseudoneoconiothyrium rosae* are (6-)7(-8)×(4-)5-6 μ m and 7-10×4-8 μ m, respectively [20-22]. Strain KNUF-20-NI009 can accordingly be distinguished from *R. euonymi* and *P. rosae* by its comparatively smaller conidia. Morphological comparisons with the previously reported closely related species are shown in Table 2.

Fig. 1. Cultural characteristics of KNUF-20-NI009 after 14 days of cultivation at 25° C. Colonies on (A, D) potato dextrose agar; (B, E) malt extract agar; (C, F) oatmeal agar. Upper (A, B, C) and lower (D, E, F) surfaces.

Fig. 2. Morphological characteristics of KNUF-20-NI009. (A) Conidiomata on potato dextrose agar (PDA); (B) Section through conidiomata; (C-G) Conidiogenous cells and developing conidia; (H) conidia. Scale bars: A=500 µm, B=50 µm, C-H=10 µm.

Characteristics		KNII 1E-20-NII009ª	Venoroussoella trisentata ^b	Roussoella euonymi [°]	Pseudoneoconiothyrium
		KINO1-20-101007		(=Pseudoneoconiothyrium euonymi)	rosae ^d
Colony	Color	On MEA, olivaceous brown to pale olivaceous-white at the margin, reverse dark olivaceous to olivaceous-brown with white margin	On MEA, white, pale grayish brown, olivaceous to olivaceous brown creamy- white in reverse, olivaceous- brown to brown, olivaceous to olivaceous-brown at the margin	On MEA, olivaceous gray with patches of pale olivaceous gray, reverse pale olivaceous gray	On MEA, olivaceous gray with patches of pale olivaceous gray, reverse pale olivaceous gray
	Size	59.3 mm diam in 14 days	N/A	60 mm diam in 14 days	5-10 mm diameter after one week at 16°C
	Shape	Circular with aerial mycelium, rugged surface slightly undulate	Circular, mycelium slightly raised, undulate	Flat, spreading, with moderate aerial mycelium and even, lobate margins	Undulate, white, with dense, flat mycelium on the surface, pale yellow in reverse
Conidia	Size (µm)	3-4.8 × 1.7-3.2	N/A	(6-)7(-8)×(4-)5-6	7-10 × 4-8
	Shape and color	Aseptate, globoid to ellipsoid, apex hebetate, thick-walled, hyaline when immature, becoming light brown to golden- brown when mature, with 1-2 guttules	N/A	Solitary, ellipsoid, guttulate, aseptate, apex obtuse, base 2 µm diam, bluntly rounded, thick-walled, becoming warty, golden-brown to red-brown	Initially hyaline, smooth and thin-walled, rough- walled when mature, globose to ellipsoid, aseptate, guttulate, and light brown to dark brown
Conidiogenous cells(µm)		Ampulliform to doliiform, proliferating percurrently at apex, integrated, discrete, hyaline, and smooth, 4-7.9×2.6- 4.8	N/A	Lining the inner cavity, hyaline, smooth, ampulliform to doliiform, proliferating percurrently at apex, 5-12×5-7	Ampulliform, enteroblastic, annellidic with distinct percurrent proliferation, sometimes cylindrical, elongate neck, integrated, discrete, smooth, and hyaline.

Table 2. Comparison of morphological characteristics of strain KNUF-20-NI009 and closely related species.

N/A: not available.

^a Fungal strain studied in this paper, ^b Mapook A et al.[7], ^c Crous PW et al. [21], ^d Hyde KD et al. [20].

Temperature and pH are important factors affecting the growth and survival of living organisms. To determine the effects of the two factors on KNUF-20-NI009 growth, we cultured the isolate in a PDA medium, which is generally and widely used for the cultivation of fungi. We accordingly established that the isolate grows optimally at a temperature of 25° C, reaching a colony diameter of 59.3 ± 2.1 mm. No growth was observed at 5° C, whereas the colonies obtained at 10° C were characterized by a white upper surface and olivaceous black to the light beige lower surface. At 15° C and 20° C, the colonies developed a rugged upper surface, olivaceous in the center with white margins, whereas the lower surface was olivaceous gray in the center and the lower surface was olivaceous green to black with a pale white margin. Contrastingly, at 30° C, we observed colonies with a cottony pale white surface colored olivaceous beneath, with the lower surface being olivaceous green to iron-gray with a white margin. Generally, we found that incubation at temperatures below 20° C and above 30° C resulted in an increase of white mycelia and colonies with a pale white margin.

With respect to pH, we established that growth of the isolate was maximal at pH 7 (63.3 ± 0.6 mm) and minimal at pH 4 (35 ± 2.6 mm), with the optimum pH for growth being neutral or slightly alkaline. Under optimum pH conditions, colonies were mostly olivaceous green to pale white with a white margin, whereas, at pH 9, the colonies were olivaceous brown to pale white with a light brown to pale white margin. Details of colony diameters at different temperatures and pH values are presented in Table 3.

Table 3. Effects of temperature and pH on mycelial growth of Xenoroussoella triseptata KNUF-20-N1009 cultured on potato dextrose agar (PDA).

Temperature	5°C	10°C	15°C	20°C	25°C	30°C	Optimum temperature (°C)
	0f	23.3±0.6e	31.3±1.2d	44.7±0.6c	59.3±2.1a	54±2.6b	25
pН	pH4	pH 5	pH 6	pH 7	pH 8	pH 9	Optimum pH
	35±2.6d	58±1.0c	58.7±1.2bc	63.3±0.6a	61±1.7ab	59±1.0bc	7

All strains were cultured on a PDA medium at various temperatures and pH for 14 days.

Values are the means of three replicates and the means of three plates. The numbers represent the mean±SD of three replicates, except for the inoculum size, which is 6 mm in diameter.

Different letters in the same column indicate a significant difference at p < 0.05, as determined using Duncan's multiple range test (n=3). (mycelial length=mm).

Phylogenetic analysis

The taxonomic status of isolate KNUF-20-NI009 was determined based on an analysis of a combined dataset of the ITS region and LSU, SSU, RPB2, and TEF1 α gene sequences [7,22,23]. Amplification of the ITS, LSU, SSU, RPB2, and TEF1 α loci of the strain yielded fragments of 586, 837, 1,008, 1,041, and 921 bp, respectively. A BLAST search of the NCBI database revealed similarities of 99.41% between the ITS regions of KNUF-20-NI009 and *Xenoroussoella triseptata* MFLUCC 17-1438 (MT214343). Similarly, analysis based on the partial LSU gene sequence revealed a 100% similarity with *Xe. triseptata* MFLUCC 17-1438 (MT214347) and 99.40% similarity with *Roussoella euonymi* CBS 143426 (MH107961) and *Pseudoneoconiothyrium rosae* MFLU 18-0117 (NG_059868). Comparisons based on the SSU sequence indicated that KNUF-20-NI009 has identities of 100, 99.70, and 99.60% with *Xe. triseptata* DC9 (OL700219), *Roussoella intermedia* CBS 170.96 (KF43390), and *Roussoella padinae* MUT<ITA>:5503 (MN556315), respectively, whereas the RPB2 gene sequence of KNUF-20-NI009 showed 99.83% similarity with *Xe. triseptata* MFLUCC 17-1438 (MT235767), with 99.73% similarity, as the closest relative to KNUF-20-NI009.

However, despite *Xe. triseptata* being identified as taxonomically closest to strain KNUF-20-NI009 based on all of the molecular markers assessed in this study, it is clear that the sequence of any one of these loci does not enable us to unambiguously identify the novel fungal strain. Accordingly, to attain a more precise identification, we performed multi-locus sequence analysis using the concatenated sequences of the ITS regions, and LSU, SSU, RPB2, and TEF1 α genes of strain KNUF-20-NI009 (Table 1). This combination of five molecular markers has previously been shown to be highly effective in resolving species in the family Roussoellaceae [7]. The neighbor-joining phylogenetic tree (Fig. 3) constructed based on analysis of these concatenated sequences demonstrated that strain KNUF-20-NI009 maps to a location distinct from those of *Roussoella*, *Pseudoroussoella*, and *Pseudoneoconiothyrium* species and that its phylogenetically closest neighbor is *Xe. triseptata*, as indicated by the fact that both the KNUF-20-NI009 and MFLUCC 17-1438 strains clustered together with a high bootstrap value of 100%.

Previous studies have reported that species of Roussoella and Roussoellopsis can typically be found on or

0.0100

Fig. 3. Neighbor-joining phylogenetic tree based on combined dataset (ITS+LSU+SSU+RPB2 and TEF1 α) showing the phylogenetic position of strain KNUF-20-NI009 among members of the family Roussoellaceae and its closest relationship with *Xenoroussoella triseptata*. The tree was rooted using *Occultibambusa bambusae* MFLUCC 13-0855^T as an outgroup. Bootstrap values greater than 70% (based on 1,000 replications) are shown at the branching points. The isolated strain is indicated in bold. Bar=0.01 substitutions per nucleotide position. ITS, internal transcribed spacer regions; LSU, large subunit rDNA; SSU, small subunit rDNA; RPB2, RNA polymerase II largest subunit; TEF1 α , translation elongation factor 1-alpha.

in the vicinity of a diverse range of plants, including monocotyledons, tall grasses, bamboos, and palms [1]. In particular, the single representative of the genus *Xenoroussoella*, *Xe. triseptata* was initially isolated from dead stems of the invasive weed *Chromolaena odorata* [7]. Contrastingly, in the present study, we isolated the KNUF-20-NI009 strain of this species from soil samples collected in Korea, thereby highlighting the wide geographical distribution and diverse habitats of this species. Although the cultural characteristics of *Xe. triseptata* on MEA medium and the morphological characteristics of its sexual stage have been described previously [7], until the present study, its asexual features had remained undetermined. By providing a detailed description of the asexual morphology of the KNUF-20-NI009 strain, the findings of this study complement our existing knowledge of this species. Moreover, we have established the cultural characteristics of the strain grown on three different media, determined the optimal temperature and pH for its cultivation, and evaluated the effects of various temperatures on its cultural characteristics. However, further investigations are needed to gain more in-depth insights into its ecological, etiological, and biological roles, particularly under the environmental conditions found in Korea.

In conclusion, our morphological and phylogenetic analyses in this study have revealed KNUF-20-

NI009 to be a strain of the fungal species *Xenoroussoella triseptata*. To the best of our knowledge, this study is the first to report the isolation of this species in Korea.

CONFLICT OF INTERESTS

No conflict of interest was reported by the author(s).

ACKNOWLEDGMENTS

This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea for a project on the survey and discovery of indigenous fungal species (NIBR201902112).

REFERENCES

- Liu JK, Phookamsak R, Dai DQ, Tanaka K, Jones EBG, Xu JC, Chukeatirote E, Hyde KD. Roussoellaceae, a new pleosporalean family to accommodate the genera *Neoroussoella* gen. nov., *Roussoella*, and *Roussoellopsis*. Phytotaxa 2014;181:1-33.
- 2. Jaklitsch WM, Voglmayr H. Hidden diversity in *Thyridaria* and a new circumscription of the *Thyridariaceae*. Stud Mycol 2016;85:35-64.
- Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SS, Liu JK, Bhat DJ, Jones EB, McKenzie EH, Camporesi E, Bulgakov TS, et al. Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2017;83:1-261.
- Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S, Camporesi E, Chethana KWT, Dayarathne MC, de Silva NI, Dissanayake AJ, Ekanayaka AH, et al. Mycosphere notes 169-224. Mycosphere 2018;9:271-430.
- Jiang HB, Hyde KD, Jayawardena RS, Doilom M, Xu J, Phookamsak R. Taxonomic and phylogenetic characterizations reveal two new species and two new records of *Roussoella* (Roussoellaceae, Pleosporales) from Yunnan, China. Mycol Prog 2019;18:577-91.
- Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EB, Maharachchikumbura SS, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, et al. Fungal diversity notes 929-1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 2019;95:1-273.
- Mapook A, Hyde KD, McKenzie EH, Jones EBG, Bhat DJ, Jeewon R, Stadler M, Samarakoon MC, Malaithong M, Tanunchai B, et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed *Chromolaena odorata* (Siam weed). Fungal Divers 2020;101:1-175.
- Poli A, Bovio E, Ranieri L, Varese GC, Prigione V. News from the sea: a new genus and seven new species in the pleosporalean families Roussoellaceae and Thyridariaceae. Diversity 2020;12:1-18.
- Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto B, Saxena R, Erdoğdu M, Selçuk F, Rajeshkumar KC, Aptroot A, et al. Outline of fungi and fungus-like taxa-2021. Mycosphere 2022;13:53-453.

- Nguyen TT, Lim HJ, Chu SJ, Lee HB. Two new species and three new records of Ascomycetes in Korea. Mycobiology 2022;50:30-45.
- Davet P, Rouxel F. Detection and isolation of soil fungi. Plymouth: Science Publishers; 2000. p. 188.
- 12. de Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Badali H, Seyedmousavi S. Waterborne *Exophiala* species causing disease in cold-blooded animals. Persoonia 2011;27:46-72.
- Mapook A, Boonmee S, Ariyawansa HA, Tibpromma S, Campesori E, Jones EBG, Bahkali AH, Hyde KD. Taxonomic and phylogenetic placement of *Nodulosphaeria*. Mycol Prog 2016;15:1-15.
- White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. San Diego: Academic Press; 1990. p. 315-22.
- Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among Ascomycetes: Evidence from an RNA polymerase II subunit. Mol Biol Evol 1999;16:1799-808.
- Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J Bacteriol 1990;172:4238-46.
- Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ, Bhat DJ, Xu JC, Taylor JE, Hyde KD, Chukeatirote E. Bambusicolous fungi. Fungal Divers 2017;82:1-105.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.
- Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4.
- Hyde KD, de Silva NI, Jeewon R, Bhat DJ, Phookamsak R, Doilom M, Boonmee S, Jayawardena RS, Maharachchikumbura SSN, Senanayake IC, et al. AJOM new records and collections of fungi: 1-100. Asian J Mycol 2020;3:22-294.
- Crous PW, Schumacher RK, Wingfield MJ, Akulov A, Denman S, Roux J, Braun U, Burgess TI, Carnegie AJ, Váczy KZ, et al. New and interesting fungi. 1. Fungal Syst Evol 2018;1:169-215.
- 22. Phukhamsakda C, McKenzie EH, Phillips AJ, Gareth Jones EB, Jayarama Bhat D, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, et al. Microfungi associated with *Clematis* (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers 2020;102:1-203.
- 23. Dai DQ, Wijayawardene NN, Dayarathne MC, Kumla J, Han LS, Zhang GQ, Zhang X, Zhang TT, Chen HH. Taxonomic and phylogenetic characterizations reveal four new species, two new asexual morph reports, and six new country records of bambusicolous *Roussoella* from China. J Fungi 2022;8:1-28.