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ABSTRACT
A fungus was isolated from ambrosia beetles collected using beetle traps in an apple orchard 
in Gunwi-gun, Daegu, South Korea. This fungal strain was termed ARI-24-A5, and was 
identified through morphological characterization and molecular phylogenetic analysis. After 
8 d of incubation on potato dextrose agar (PDA), ARI-24-A5 exhibited gray-to-olive coloration, 
abundant aerial mycelia, and a colony diameter of 72.0–79.0 mm. Morphologically, the 
aleurioconidiophores formed monilioid chain structures, and the size of the aleurioconidia 
was 11.1 × 10.8 μm. For precise identification, molecular phylogenetic analysis was 
performed using the internal transcribed spacer (ITS) region, translation elongation factor 
1-alpha (TEF1-α), small subunit of nuclear ribosomal RNA (SSU), and RNA polymerase II 
subunit 1 (RPB1) gene sequences. The overall analysis confirmed that ARI-24-A5 belongs to 
the genus Ambrosiella, which is known for its symbiotic relationship with ambrosia beetles. 
In the phylogenetic tree, ARI-24-A5 shared the same taxonomic position as A. catenulata and 
its morphological characteristics were consistent with those of this species. Therefore, ARI-
24-A5 was identified as A. catenulata, making this the first record of this species in South 
Korea.

Keywords: Ambrosia beetle, Ambrosiella catenulata, Korean apple orchard, Symbiotic 
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INTRODUCTION
Ambrosia beetles (Coleoptera: Curculionidae) belong to the subfamilies Scolytinae and Platypodinae 

and are a highly diverse pest group, with 158 species reported in Korea [1]. These beetles cause significant 

damage to orchards, nurseries, and forest ecosystems, making them major pests [2]. Based on their 

ecological characteristics, beetles are classified into two types: bark beetles, which feed on the tree substrate 

itself, and ambrosia beetles, which bore tunnels into trees and cultivate ambrosia fungi within these tunnels 

for nutrition [3,4]. These unique ecological behaviors suggest that these pests cause long-term damage to 

trees through interactions with their symbiotic fungi.

Most of these beetles have evolved a wide range of symbiotic relationships with fungi. However, the 

degree and nature of these associations vary significantly, often exhibiting unique characteristics that are 

https://nt.ars-grin.gov/fungaldatabases/
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not observed in other beetle groups [5,6]. Similarly, the relationships among bark beetles, fungi, and their 

tree hosts are diverse. Some bark beetles require tree mortality for reproduction [7], whereas others feed on 

white-rot fungi found in decaying tree trunks [8], and some live in association with fungi in dry branches [9].

In Korea, Raffaelea quercus-mongolicae is the causal agent of oak wilt disease and has been reported to 

form a symbiotic relationship with Platypus koryoensis, with beetle invasion triggering the disease [1]. In 

addition, in the United States, ambrosia beetles (Anisandrus maiche), which contribute to the decline of 

apple trees, have been collected. Ambrosiella cleistominuta has been isolated from the galleries and adults 

of this beetle and was identified as a symbiotic fungus associated with A. maiche [2].

As mentioned, ambrosia beetles are associated with various fungi [5,10], and Batra [11] defined ʻprimary 

ambrosia fungi’ as fungi that co-evolve with the mycangia of the beetle and form dense spore layers 

inside the beetle tunnels, serving as a food source for the beetles. Most species of the genus Ambrosiella, 

associated with ambrosia beetles, have been reported to exhibit a strong relationship with these beetles [12]. 

In Korea, two species have been documented: A. grosmanniae KNU16-001 [13] from soil and A. roeperi 

ARI-24-A4 [14] from ambrosia beetles.

In the present study, ambrosia beetles that damaged apple trees in domestic orchards were collected using 

beetle traps. The fungi isolated from these beetles were identified based on morphological and molecular 

phylogenetic analyses. The results of these identifications are reported here.

MATERIALS AND METHODS

Fungal isolation from ambrosia beetles
Ambrosia beetles were collected using a beetle trap in an orchard at the Apple Research Center in Gunwi-

gun, Daegu-si, Korea (36°29′68.9″N, 128°46′56.1″E). The beetle bodies were surface-sterilized with 

70% ethanol and thoroughly dried for approximately 10 min. Subsequently, the insects were dissected 

by separating the head and thorax from the abdomen. Each segment was transferred onto potato dextrose 

agar (PDA; Difco, Detroit, MI, USA) plates and incubated at 25℃ for 3 d. The resulting mycelial growth 

was subcultured onto fresh PDA plates and incubated for an additional 8 d at the same temperature. The 

resulting pure culture was labeled as ARI-24-A5 and preserved in 20% glycerol at -80℃ for future use.

Morphological characterization
The isolated ARI-24-A5 was cultured on PDA medium at 25℃ for 8 d to examine its cultural and 

mycological characteristics. After cultivation, various features of the fungal colonies, such as diameter 

and color, were observed. The morphology and size of the conidia and conidiophores were examined and 

recorded using a light microscope (CX-43; Olympus, Japan).
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Genomic DNA extraction, polymerase chain reaction (PCR) amplification, 
and sequencing

For molecular analysis and to assess phylogenetic relationships, genomic DNA from strain ARI-24-A5 

was extracted using the HiGene Genomic DNA Preparation Kit (Biofact, Daejeon, Korea) following the 

manufacturer’s guidelines. Subsequently, partial sequences of the internal transcribed spacer (ITS) regions, 

small subunit of nuclear ribosomal RNA (SSU), translation elongation factor 1-alpha (TEF1-α), and 

RNA polymerase II subunit 1 (RPB1) genes were amplified and obtained using PCR. The ITS regions 

were amplified using the ITS1F/ITS4 [15,16] and ITS5/LR3 primers [16]. The SSU gene was amplified 

using the NS-1/NS-6 primers [16,17]. The TEF1-α gene was amplified using the EFCF1.5/EFCF6 primer 

pair [18]. The RPB1 gene was amplified using the RPB1-Af/RPB1-Cr primer pair [12,19,20]. The PCR 

amplification products were verified through electrophoresis on 1% agarose gels, followed by staining with 

ethidium bromide. The resulting PCR products were purified using EXOSAP-IT reagent (Thermo Fisher 

Scientific, Waltham, MA, USA), according to the manufacturer’s guidelines. Sequencing was performed by 

Solgent Co. Ltd. (Daejeon, Korea). Sequence analysis was performed using SeqMan Lasergene software 

(DNAStar Inc., Madison, Wisconsin, USA). The ITS regions, SSU, TEF1-α, and RPB1 gene sequences 

were deposited in GenBank with accession numbers LC835911 (ITS), LC835913 (SSU), LC835915 (TEF1-

α), and LC848343 (RPB1), respectively.

Molecular phylogenetic analysis
The sequences of Ambrosiella spp. were retrieved from the National Center for Biotechnology 

Information (NCBI) database. These sequences were aligned using Clustal X 2.0, in MEGA 7 [21]. A 

phylogenetic tree was constructed based on concatenated nucleotide sequences of the ITS region, TEF1-α, 
and SSU genes. For the analysis, the nearest neighbor interchange method was employed using Kimura’s 
two-parameter model [22], excluding gaps. A phylogenetic tree was constructed using the maximum 

likelihood (ML) method [23], and reliability was assessed using bootstrap values from 1,000 replicates.

RESULTS

Mycological characteristics of strain ARI-24-A5
After culturing on PDA at 25℃ for 8 d, the colony diameter reached 72.3–79.2 mm. On the front side, 

white mycelia were observed in the center, which transitioned from olive to white toward the edges. In 

addition, the surface was covered with abundant aerial mycelia. The back side was generally olive-gray in 

color (Fig. 1A).

The aleurioconidiophores were hyaline, smooth, ovoid, and monilioid, with branching structures 

(Fig. 1B). Conidia and collarettes were formed at the terminal ends of the conidiophores (Figs. 1C and 

D). Aleurioconidia are hyaline, ranging from spherical to subglobose in shape, with an average size of 
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11.1 × 10.8 μm (n = 50), were located at the ends of the aleurioconidiophores. When the aleurioconidia 

detached from the terminal end, they typically carried one or two conidiophores (Fig. 1E). In most cases, 

aleurioconidia detach from multiple conidiophore cells during chain formation (Fig. 1F).

Fig. 1. Cultural and morphological characteristics of Ambrosiella catenulata. A: Front and reverse view 
of the colony grown on potato dextrose agar (PDA) for 8 days at 25℃. B, C: Aleurioconidiophores 
with terminal aleurioconidia. D: Aleurioconidiophores with collarettes. E: Aleurioconidiophores with 
aleurioconidia. F: Aleurioconidiophores with aleurioconidia and forms a monilioid chain. Scale bars: B–
F = 10 μm.

Phylogenetic analysis
To analyze the molecular and phylogenetic relationships of ARI-24-A5, four molecular markers (ITS 

region, TEF1-α, SSU, and RPB1) were used. The lengths of the sequences obtained were 1,078, 1,119, 1,318, 

and 762 bp, respectively. A Basic Local Alignment Search Tool (BLAST) search was conducted to compare 

these sequences with those of other strains in the NCBI database. For the ITS region, ARI-24-A5 showed 

the highest similarity (100%) to Ambrosiella catenulata W186q, followed by 99.8% similarity with A. 

xylebori Hulcr5114 and A. cleistominuta C3843. For TEF1-α, ARI-24-A5 exhibited 100% similarity with 

A. catenulata W186q, 97.2% with A. xylebori CBS 110.61, and 96.3% with A. grosmanniae 1002HHS1. 

For SSU, ARI-24-A5 displayed 100.0% similarity with A. catenulata C3913 and 99.9% similarity with A. 

batrae, A. xylebori, and A. cleistominuta. Finally, RPB1 of ARI-24-A5 showed 100% similarity with three 

strains of A. catenulata (12B1, 12B2, and W186q), 99.1% similarity with A. xylebori JH12105, 96.5% 

similarity with A. grosmanniae JH12109, and 95.2% similarity with A. beaveri W204qT. This analysis 

indicated that ARI-24-A5 matched perfectly (100%) with A. catenulata across all four genetic markers (ITS, 

TEF1-α, SSU, and RPB1). To analyze the phylogenetic relationships of ARI-24-A5, a multilocus sequence 
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analysis (MLSA) was conducted using ITS, TEF1-α, and SSU, based on the process of Mayers et al. [24], 

with nucleotide sequence data retrieved from the NCBI database for Ambrosiella species (Table 1). The 

phylogenetic tree was constructed using the ML method and confirmed that ARI-24-A5 shares the same 

phylogenetic position as A. catenulata and is clearly distinguishable from other species (Fig. 2). Based on 

comprehensive phylogenetic analyses, ARI-24-A5 was conclusively identified as identical to A. catenulata 

at the species level.

Table 1. The following is a list of species included in the phylogenetic analyses, along with their corresponding GenBank accession numbers
Species Strain Associated ambrosia beetle GenBank accession numbers

ITS TEF1-α SSU
Ambrosiella batrae CBS 139735T Anisandrus sayi KR611322 KT290320 KR673881
Ambrosiella catenulata C3913 Ambrosia beetle MG950184 MG944394 MG950189
Ambrosiella cleistominuta C3843 Anisandrus maiche KX909940 KX925304 KX925309
Ambrosiella grosmanniae CBS 137359T Xylosandrus germanus KR611324 KT318382 KR673884
Ambrosiella hartigii CBS 404.82 Anisandrus dispar KF669873 KT318383 KR673885
Ambrosiella nakashimae CBS 139739T Xylosandrus amputatus KR611323 KT318381 KR673883
Ambrosiella remansi M290 Remansus mutabilis KX342068 KX342072 KX354426
Ambrosiella roeperi CBS 135864T Xylosandrus crassiusculus KF669871 KT318384 KR673886
Ambrosiella xylebori CBS 110.61T Xylosandrus compactus KF669874 KT318385 KR673887
Ambrosiella catenulata ARI-24-A5 Ambrosia beetle LC835911 LC835915 LC835913
ITS: internal transcribed spacer regions; TEF1-α: translation elongation factor 1-α; SSU: small subunit of nuclear ribosomal RNA.
T ex-type. The isolated strain is shown in bold. 

Fig. 2. Maximum-likelihood phylogenetic tree of ARI-24-A5 based on the combined sequences (ITS 
+ TEF1-α + SSU), showing the phylogenetic position of the ARI-24-A5 strain among Ambrosiella 
species. Bootstrap values (based on 1,000 replications) greater than 70% are indicated at the branch 
points. The isolated strain is highlighted in bold. Ambrosiella nakashimae (CBS 139739

T
) was used as 

the outgroup. Bar = 0.005 substitutions per nucleotide position. ‘T’ indicates the type strain. ITS: internal 
transcribed spacer regions; TEF1-α: translation elongation factor 1-α; SSU: small subunit of nuclear 
ribosomal RNA.
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Comparison of mycological characteristics
The culture and morphological characteristics of ARI-24-A5 were consistent with those of A. catenulata. A. 

catenulata is morphologically very similar to A. roeperi, and the ARI-24-A5 strain showed similar trends to A. 

roeperi in terms of the shape and size of its aleurioconidia. The size of the aleurioconidia in ARI-24-A5 was 

(7–)11.1(–16) × (7–)10.8(–13) μm, which was closely similar to that of the aleurioconidia in A. roeperi, 

which was (7–)11.0(–16) × (5–)10.0(–14) μm. In addition, both species have spherical aleurioconidia. 

However, when conidia dislodge, two or more conidiophore cells typically remain attached to the dislodged 

aleurioconidia in A. catenulata, often forming a chain-like structure, whereas in A. roeperi, typically only 

one cell remains. Furthermore, the sporodochia of A. catenulata were spherical, whereas those of A. roeperi 

appeared diffuse and cushion-like (Table 2).

DISCUSSION
This study aimed to analyze symbiotic fungi isolated from ambrosia beetles collected from apple trees 

in Korea, with a focus on the accurate identification of fungal species associated with these beetles. The 

fungus isolated from ambrosia beetles was identified as A. catenulata.

Species of the genus Ambrosiella Brader ex Arx & Hennebert [25] have been shown to form symbiotic 

relationships with ambrosia beetles, establishing dense fungal gardens known as “ambrosia”, which serve 

as the beetles exclusive food source [26–28]. These fungi are typically found in beetles with large and 

complex mesothoracic mycangia, which are specialized structures for storing and transporting fungi [12]. 

In contrast, beetles with smaller mycangia may host various species of the genus Raffaelea as well as other 

fungi. Specific species within the genus Raffaelea form symbiotic relationships with multiple beetle species 

[29,30]. A key morphological feature of Ambrosiella spp. is the formation of aleurioconidia, which are often 

Table 2. Comparison of the morphological characteristics of strain ARI-24-A5 with those of the reference species Ambrosiella 
catenulata and A. roeperi
Characteristics A. catenulataa (ARI-24-A5) A. catenulatab A. roeperib

Colony Color Overall light gray color is exhibited, with olive 
coloration observed at the edges. Additionally, 

abundant aerial mycelium is formed

Olivaceous to gray, surface covered with abundant aerial
mycelium

Olivaceous to gray, dark gray, to dark-brown 
superficial

Shape Colonies on PDA attaining
72.0–79.0 mm diam
after 8 days at 25℃

Colonies on PDA attaining
52.0–59.0 mm diam
after 8 days at 25℃

Colonies on PDA attaining
60.5–70.0 mm diam
after 8 days at 25℃

Aleurioconidiophores Color Hyaline Hyaline Hyaline to subhyaline
Shape Smooth and ellipsoidal, forming monilioid chains, 

with the part attached to the spores observed as 
thickened septa

Smooth, ellipsoidal, monilioid, branched, sometimes the 
collarette appearing as thickened septa

Smooth, cylindrical, monilioid, branched, 
with or without a collarette on the top cell of 

conidiophores
Aleurioconidia Color Hyaline Hyaline Hyaline

Shape Thick-walled, smooth, with organelles observed, 
almost spherical in shape, When detaching, it 

mostly contains one or more conidiophore cells and 
forms a chain-like

Globose to subglobose, single and terminal on aleur 
ioconidiophores, when detaching, mostly carrying two 

(rarely one) or more conidiophore cells

Thick-walled, globose to subglobose, 
if detachable, it mostly carries a single 

conidiophore cell, which is cushion-like in shape

Size 
(μm)

(7–)11.1(–16) × (7–)10.8(–13) (8–)9–13(–16) × (7 .5–)9–12(–13) (7–)9–13(–16) × (5–)8–12(–14)

a Fungal strain studied in this paper; b Source of description [31]. 
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attached to one or more conidiophore cells, or positioned at the tip of an independent aleurioconidiophore. 

Aleurioconidia may exist as single units or, rarely, as short chains and may also form a collarette at the apex 

of the conidiophore [31].

To distinguish Ambrosiella spp., Mayers et al. [24] used ITS regions, TEF1-α, and SSU gene sequences 

to differentiate species such as A. beaveri, A. ferruginea, A. hartigii, A. roeperi, and A. xylebori [12]. 

However, these markers are insufficient for differentiating A. nakashimae from A. beaveri. In 2017, Lin 

et al. [31] proposed A. catenulata as a new species based on ITS, TEF1-α, and RPB1 gene sequences. 

However, these markers failed to differentiate A. nakashimae from A. beaveri. This finding is consistent 

with the results of Mayers et al. [24] and Lin et al. [31], who reported that their phylogenetic analysis 

aligned with the phylogenetic tree presented by Mayers et al. [24].

For this analysis, four molecular markers (ITS, TEF1-α, SSU, and RPB1) previously applied in 

related studies were used to determine the molecular phylogeny of strain ARI-24-A5. A BLAST search 

confirmed that this strain is A. catenulata. Its closest relative was identified as A. xylebori, which showed 

morphological similarities to A. roeperi, although significant morphological differences were observed in 

the sporodochia structure. To construct the phylogenetic tree, the ITS, TEF1-α, and SSU gene sequences 

were analyzed following the method used by Mayers. The RPB1 sequences used in the method of Lin 

et al. [31] were excluded because of the lack of sequence data for most Ambrosiella specimens. Both 

phylogenetic trees yielded consistent results, allowing the use of a single method.

The comprehensive findings of this study revealed that ARI-24-A5 shares the same phylogenetic position 

as A. catenulata C3913 and is distinct from other Ambrosiella spp.. This represents the first report of A. 

catenulata in Korea. In addition, R. quercus-mongolicae has been reported as a symbiotic fungus of the 

ambrosia beetle (P. koryoensis) that damages oak trees in Korea [1]. Although reports on symbiotic fungi 

associated with ambrosia beetles in Korean apple orchards remain limited, in the United States, symbiotic 

fungi such as Ambrosiella xylebori and A. cleistominuta have been isolated from ambrosia beetles that 

damage apple orchards in New York [2,32]. This indicates that the ambrosia beetles that damage apple trees 

in Korea may also be associated with symbiotic fungi other than A. catenulata, highlighting their potential 

for discovering additional symbiotic fungi. Understanding these symbiotic relationships is essential to 

devise sustainable pest management strategies. Future research should focus on thoroughly investigating 

the ecological and economic impacts of A. catenulata in Korean apple orchards and exploring the influence 

of environmental factors on its distribution.
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