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ABSTRACT
Prunus × yedoensis, which is widely cultivated for ornamental purposes, is highly 
susceptible to witches’ broom disease caused by Taphrina wiesneri. Conventional physical 
and chemical control measures have certain limitations due to environmental concerns, 
thereby highlighting the need for alternative approaches. In this study, we sought to isolate 
and identify endophytic fungi from Prunus × yedoensis and evaluate their potential 
as biological control agents against T. wiesneri using dual culture assays. A total of 45 
endophytic fungal species were isolated and identified based on an analysis of internal 
transcribed spacer sequences. Fungal species composition was found to differ between 
leaves and twigs, with Diaporthe eres and Nothophoma quercina being the most prevalent 
species. Dual culture assays revealed that Aspergillus flavus, and Trichoderma guizhouense 
have significant inhibitory effects on T. wiesneri (inhibition index > 0.5). These findings 
indicate that endophytic fungi could be harnessed to facilitate the suppression of witches’ 
broom disease in Prunus × yedoensis

Keywords: Biological Control Agent, Dual Culture, Endophytic fungi, Prunus × yedoensis, 
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INTRODUCTION
Prunus × yedoensis Matsum., a plant prized for its ornamental value, is widely planted in urban 

landscapes and public parks [1]. However, its susceptibility to witches’ broom disease caused by the 

fungus Taphrina wiesneri poses a serious threat to its health and longevity [2]. Infected twigs tend to be 

characterized by abnormal shoot proliferation and leaf expansion, leading to suppressed flowering and 

reduced tree vitality. In severe cases, twig dieback occurs within a few years, and prolonged infection can 

result in tree mortality [3,4].

Taphrina wiesneri has been established to colonize host tissues and produce phytohormones, such as 

indole-3-acetic acid and cytokinin, that contribute to disrupting the host’s hormonal balance and inducing 
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disease symptoms [5,6]. Current control strategies include the physical removal of infected twigs and the 

application of triazole fungicides, such as tebuconazole and difenoconazole [7]. However, these approaches 

are often insufficient for long-term disease management and raise ecological concerns relating to chemical 

use and pathogen resistance [8,9].

Endophytic fungi, which reside within plant tissues without causing disease, have garnered attention for 

their potential as biological control agents [10,11]. These fungi can inhibit plant pathogens via competition, 

mycoparasitism, or the production of antifungal compounds, and the findings of several studies have 

provided evidence of the antagonistic activity of endophytes against important phytopathogens, thereby 

highlighting their potential utility in sustainable plant disease management [12–14].

In this study, we sought to isolate and identify endophytic fungi from healthy Prunus × yedoensis tissues 

and to evaluate their antagonistic activity against T. wiesneri using dual culture assays. By identifying 

potential biocontrol candidates, our findings in this study will provide a basis for developing eco-friendly 

alternatives for managing witches’ broom disease in cherry trees.

MATERIALS AND METHODS

Sample collection and isolation of endophytic fungi
In April 2024, samples of healthy leaves and twigs were collected from 12 Prunus × yedoensis trees 

in Seoul, and in September 2024, from five trees in Cheongju. Having initially washed under running tap 

water, these samples were sequentially surface-sterilized using 35% hydrogen peroxide (H₂O₂) for 2 min, 

followed by 70% ethanol for 30 s, and were then rinsed three times with sterile water [15]. The surface-

sterilized tissues were thereafter cut into 10 × 10 mm (leaves) or 10 mm (twigs) segments and placed on 

potato dextrose agar (PDA; Kisan Bio, Seoul, Korea). Plates were incubated at 25°C and monitored for the 

emergence of fungal colonies, which were subsequently sub-cultured onto fresh PDA to obtain pure isolates.

Molecular identification of fungal isolates
Genomic DNA was extracted from the isolates using a HiGene™ Genomic DNA Prep Kit for Fungi 

(BioFACT, Korea). The internal transcribed spacer (ITS) region, including ITS1, 5.8S rDNA, and ITS2 

sequences, was amplified using the primer pair ITS1-F and ITS4 [16,17]. Additional DNA regions, namely, 

the large subunit (LSU) and translation elongation factor-1-α (Tef1α), were also amplified, using LR0R/

LR5 [18] and EF1-983F/EF1-1567R [19], respectively. Sequences were identified on the basis of BLAST 

(Basic Local Alignment Search Tool) searches against the NCBI (National Center for Biotechnology 

Information) GenBank database, and have been submitted to this database.

Dual culture assays
Dual culture assays were performed to assess the antagonistic activity of endophytic fungal isolates 
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against Taphrina wiesneri strain KACC45487, which was obtained from the Korean Agricultural Culture 

Collection (KACC). A 7-mm-diameter agar plug of T. wiesneri was placed 10 mm from the edge of 

90-mm-diameter PDA plates and incubated at 25°C for 7 days. Subsequently, a plug of an endophytic 

fungal isolate was placed on the opposite side of plates, and the plates were incubated at 25°C for a further 

21 days. Each assay was performed in triplicate. As a control, T. wiesneri was cultured alone under the same 

conditions. The area of T. wiesneri colonies was measured using ImageJ software [20], and the inhibition 

index (I) was calculated using the following formula:

I = (A control – A treatment)/A control

where A control is the colony area of T. wiesneri in control plates, and A treatment is the colony area in dual-

culture plates [21]. Statistical analysis of the inhibitory effects was conducted using Student’s t-test in R (v. 

4.2.2), for which, p-values < 0.05 were considered significant.

RESULTS AND DISCUSSION

Diversity of endophytic fungi
A total of 204 fungal strains were isolated from the leaves and twigs of Prunus × yedoensis. On the 

basis of BLAST analysis of the ITS sequences of these isolates against accessions in the GenBank database, 

strains with ≥ 98% similarity were identified at the species level, whereas those with lower similarity were 

assigned to the genus level (Table 1). A total of 45 endophytic fungal species from 21 genera were identified 

from Prunus × yedoensis, among which 33 species from 19 genera were isolated from leaves, and 25 

species from nine genera were obtained from twigs. Common species found in both organs included 

Alternaria alternata, Aureobasidium pullulans, and Colletotrichum fioriniae (Table 1). Nothophoma quercina 

was identified as the most frequently isolated species from leaves (41.2%), followed by Paraconiothyrium 

brasiliense (35.3%) and Dothiorella gregaria (29.4%), whereas Diaporthe eres was the most common 

species detected in twigs (70.6%), followed by Botryosphaeria dothidea (52.9%) and Diaporthe nobilis 

(41.2%) (Table 1). Statistical analysis of species diversity indices revealed that values of the Shannon–

Wiener diversity index were significantly higher for fungi in twigs than those in leaves (p < 0.05) (Fig. 1). 

However, we detected no significant differences between leaves and twigs with respect to species richness 

and evenness. These findings accordingly reveal differences in the composition and diversity of endophytic 

fungi in the leaves and twigs of Prunus × yedoensis, which is consistent with previously reported findings 

indicating that fungal communities differ depending on plant tissue and environmental conditions [21,22].
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Table 1. Frequency of endophytic fungi isolated from the leaves and twigs of Prunus × yedoensis

Endophytic fungal species Representative strain GenBank Accession No (ITS)
Frequency of isolates (%)

Leaves Twigs
Alternaria alternata 24N0182 PV668950 5.88 17.65
Anteaglonium sp. 24N0144 PV791132 5.88 0.00
Aspergillus flavus 24N0267 PV682710 11.76 0.00
Aspergillus niger 24N0281 PV791150 5.88 0.00
Aureobasidium melanogenum 24N0137 PV790968 5.88 0.00
Aureobasidium pullulans 24N0265 PV791115 11.76 5.88
Botryosphaeria dothidea 24N0282 PV791156 17.65 52.94
Cephalotheca foveolate 24N0279 PV791148 5.88 0.00
Cladosporium cladosporioides 24N0149 PV791003 23.53 0.00
Colletotrichum fioriniae 24N0262 PV791020 5.88 17.65
Colletotrichum gigasporum 24N0300 PV791160 5.88 0.00
Colletotrichum gloeosporioides 24N0181 PV791007 0.00 11.76
Colletotrichum siamense 24N0230 PV791010 0.00 5.88
Collophorina rubra 24N0139 PV791002 5.88 0.00
Diaporthe alnea 24N0287 PV791154 5.88 0.00
Diaporthe amygdali 24N0193 PV791179 17.65 23.53
Diaporthe capsica 24N0238 PV791012 0.00 5.88
Diaporthe celeris 24N0312 PV791165 5.88 5.88
Diaporthe cotoneastri 24N0234 PV791011 0.00 17.65
Diaporthe eres 24N0261 PV791018 11.76 70.59
Diaporthe fukushii 24N0218 PV791008 0.00 5.88
Diaporthe fusicola 24N0317 PV791169 5.88 11.76
Diaporthe garethjonesii 24N0314 PV791168 0.00 5.88
Diaporthe nobilis 24N0309 PV791166 5.88 41.18
Diaporthe perseae 24N0306 PV791162 0.00 17.65
Diaporthe phaseolorum 24N0199 PV791180 0.00 5.88
Diaporthe phragmitis 24N0241 PV791014 0.00 11.76
Diaporthe vaccinii 24N0208 PV791006 5.88 11.76
Dothiorella gregaria 24N0255 PV791017 29.41 11.76
Epicoccum nigrum 24N0248 PV791016 0.00 5.88
Fusarium solani 24N0277 PV791143 5.88 0.00
Fusarium verticillioides 24N0116 PV668820 5.88 0.00
Kalmusia longispora 24N0248 PV791142 5.88 0.00
Nothophoma quercina 24N0273 PV791116 41.18 17.65
Paraconiothyrium brasiliense 24N0114 PV790601 35.29 0.00
Penicillium brevicompactum 24N0119 PV790967 5.88 0.00
Penicillium griseofulvum 24N0280 PV791149 5.88 0.00
Pestalotiopsis chamaeropis 24N0166 PV791004 0.00 5.88
Pestalotiopsis cocculin 24N0264 PV791021 5.88 0.00
Pestalotiopsis kenyana 24N0224 PV791009 0.00 5.88
Pestalotiopsis microspora 24N0130 PV668952 11.76 17.65
Phyllosticta capitalensis 24N0297 PV791161 5.88 0.00
Quixadomyces sp. 24N0115 PV809772 5.88 0.00
Trichoderma guizhouense 24N0293 PV682713 5.88 0.00
Xylaria primorskensis 24N0276 PV791133 5.88 0.00
ITS, internal transcribed spacer.   



Diversity and Screening of Endophytic Fungal Strains from Prunus × yedoensis for Inhibition of Taphrina wiesneri Growth

The Korean Journal of Mycology 2025 Vol.53 141

Dual culture assays with T. wiesneri
Twelve endophytic fungal species, selected based on their prevalence in both sampling regions and plant 

organs, were tested against T. wiesneri KACC45487 using dual culture assays. The results revealed that 

although none of the assessed endophytic fungi produced zones of inhibition of T. wiesneri growth, within 

7 days, some fungal isolates had overgrown the pathogen colony. Among these, five isolates were found 

to have caused a significant suppression of pathogen growth (p < 0.05) (Fig. 2), with Aspergillus flavus 

24N0267 and Trichoderma guizhouense 24N0293 isolated from leaves being characterized by inhibition 

indices (I) exceeding 0.5 (Table 2).

Fig. 1. Comparison of the Shannon–Wiener diversity index values obtained for endophytic fungi isolated 
from the leaves and twigs of Prunus × yedoensis. Values of the Shannon–Wiener diversity index for 
twig isolates were approximately 0.138- to 0.464-fold higher than those for leaf isolates (t = -2.614, p = 
0.016). * Indicates p < 0.05.

Fig. 2. Comparison of the culture area of Taphrina wiesneri KACC45487 measured on the 21st day of 
dual culture with selected endophytic fungi. Bars represent mean areas with standard errors. Asterisks 
indicate significant differences compared with the control (KACC45487) based on analysis using 
Student’s t-test: ** p <0.01, *** p < 0.001.
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Aspergillus flavus is widely encountered as an endophytic fungus in woody and herbaceous plants 

worldwide [23,24]. It produces mycotoxins, such as aflatoxin B1 (AFB1) and aspergillic acid, along with 

extracellular hydrolytic enzymes, including pectinase and protease, which contribute to fungal defense 

mechanisms [25,26]. These enzymes can potentially degrade the cell walls of other fungi, thereby 

contributing to antagonistic activity of this species. However, AFB1 has been established to be a potent 

carcinogen that contaminates crops such as peanuts and corn, and thus further studies are necessary to 

assess ecological safety of A. flavus for biocontrol applications [27]. Similarly, Alternaria alternata produces 

AAL- and AF-toxins and can act as an opportunistic pathogen in several crops [28,29]. Moreover, Fusarium 

verticillioides induces wilt and rot in maize [30]. Therefore, additional studies are required to reduce the 

toxicity and enhance the stability of these fungi for use as biocontrol agents.

In contrast, Pestalotiopsis microspora has been established to produce pestacin, an antifungal compound, 

and taxol, an anticancer agent [31,32], whereas Trichoderma guizhouense is an efficient producer of 

cellulase and has been applied to enhance crop productivity [33]. It is accordingly speculated that its 

potential utility as a biocontrol agent may involve mycoparasitism mediated via the production of cell wall-

degrading enzymes. On the basis of the evidence obtained to data, these two species are thus considered 

promising candidates for safe and effective biological control applications [34].

Given that T. wiesneri resides within host tissues and induces disease symptoms, employing endophytic 

fungi that naturally inhabit the same niche without harming the plant represents a sustainable and 

ecologically safe strategy for disease management. If further experiments confirm the inhibitory effects 

of selected endophytic fungi on T. wiesneri in vivo, this approach could be practically applied in disease 

control. Moreover, if the five fungal species identified in this study are found at significantly lower 

frequencies in diseased trees than in healthy ones, this would provide additional evidence in support of their 

role as potential biocontrol agents against witches’ broom disease.

In this study, we identified 45 endophytic fungal species isolated from Prunus × yedoensis and assessed 

their potential as biocontrol agents against T. wiesneri. Among these fungal isolates, five strains were 

demonstrated to have significant inhibitory effects against T. wiesneri in dual culture assays. Further studies 

should evaluate the field efficacy and ecological safety of these strains to facilitate the development of 

sustainable biological control strategies against witches' broom disease.

Table 2. Molecular identification and the inhibition index of five endophytic fungal strains 
against Taphrina wiesneri KACC45487

Fungal strains
GenBank accession numbers submitted

Inhibition index (I)
ITS LSU Tef1α

Alternaria alternata 24N0182 PV668950 PV682695 PV691783 0.34
Aspergillus flavus 24N0267 PV682710 PV682711 PV691784 0.56
Fusarium verticillioides 24N0116 PV668820 PV668962 PV691782 0.49
Pestalotiopsis microspora 24N0130 PV668952 PV682712 PV684600 0.38
Trichoderma guizhouense 24N0293 PV682713 PV682714 PV691785 0.51
ITS, internal transcribed spacer; LSU, large subunit; Tef1α, translation elongation factor-1. 
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